Acta Cryst. (1965). 19, 426

X-Ray Structure Analysis of Sodium Hydrogen Sulphate Monohydrate

BY G.E. PRINGLE AND T.A. BROADBENT

School of Chemistry, University of Leeds, England

(Received 5 December 1964)

The crystal structure of sodium hydrogen sulphate monohydrate at room temperature has been determined by three-dimensional methods. There are four formula units in a monoclinic unit cell which has $a=8\cdot217\pm0\cdot005$, $b=7\cdot788\pm0\cdot005$, $c=7\cdot814\pm0\cdot005$ Å; $\beta=119^{\circ}$ 56'±5' and space group Aa.

The structure has been refined by the method of least squares with allowance for anisotropic thermal vibration for all atoms but those of hydrogen. The final R value is 0.103.

In the distorted tetrahedron of the SO₄ group the S–O(H) distance is longer by 0.16 Å than the other S–O distances. S–O(H)=1.61 Å and S–O=1.45 Å after correction for rotational oscillation. The anions are linked by the acidic hydrogen atoms to form chains in the [101] mean direction. The water molecules link these chains transversely by hydrogen bonding to the remaining oxygen atoms, forming chains in the [011] direction.

Six oxygen atoms surround each Na^+ ion in an irregular octahedron. The lone pairs on water molecules point approximately to two Na^+ ions.

Introduction

The inorganic sulphates and hydrogen sulphates present a diversity of structures of which relatively few have been fully examined; isomorphism does not appear to reduce the problem to manageable size, especially as the numbers are swollen by a long list of hydrates.

The anhydrous and hydrated sodium hydrogen sulphates are two of the structures hitherto unknown; we have chosen the latter to investigate because the hydrogen bonding of the water molecule is of some interest and has not so far been successfully studied by proton resonance. Owing to the low acid strength of the HSO_4^- anion one hardly expects the oxonium ion to be present in a structurally significant degree; yet the water oxygen might have proved to be bonded loosely to the acidic hydrogen. In the event, this possibility is disproved since the water is hydrogen-bonded to only two other oxygen atoms; perhaps this too could have been foreseen by inspection of the formula NaHSO₄. H_2O , since if each H is coordinated to two O, of which there are only five altogether, it seems likely that one of the latter is coordinated to two H, and the rest to one each only.

This conclusion may be compared with thermochemical data. Standard heat of hydration is perhaps less helpful here than heat of hydration by water vapour, *i.e.* 12.0 cal.mole⁻¹. (National Bureau of Standards Circular 500) approximately corresponding to the formation of two hydrogen bonds by each water molecule. We therefore suppose that the electrostatic lattice energy is not grossly affected by the hydration.

Experimental

Crystals were obtained from a solution of NaHSO₄ in 45% sulphuric acid, and being deliquescent were sealed into glass capillary tubes.

Cu K α radiation was used for all diffraction measurements. Unit-cell dimensions were obtained from Weissenberg photographs on which were superimposed powder patterns from copper and aluminum wires. The values obtained were: $a=8\cdot217\pm0\cdot005$, $b=7\cdot788\pm0\cdot005$, $c=7\cdot814\pm0\cdot005$ Å; $\beta=119^{\circ}$ 56' \pm 5'.

Permitted reflexions (hkl with k+l even, h0l with h even) corresponded to space groups Aa or A2/a. With 4 molecules in the unit cell, the calculated density is 2.12 compared with 2.10 found by direct determination.

The crystals used in gathering intensity data were dipped into liquid nitrogen so that the thermal shock would improve their mosaic quality and reduce extinction effects. They were chosen to be as nearly spherical as possible with no dimension greater than 0.15 mm. The linear absorption coefficient $\mu = 60$ cm⁻¹.

Equi-inclination Weissenberg photographs were taken about the a, b and [110] axes (5,5 and 3 layers respectively). A multiple-film technique was used and the intensities were estimated visually.

The following calculations on the Leeds University Pegasus computer were made by means of programs written by Mr J. G. F. Smith:

(a) Application of Lorentz and polarization factors. (b) Corrections to non-zero layers on which only the elongated spots were measured (Phillips, 1954).

(c) Correlation of layer lines by the least-squares method of Rollett & Sparks (1960).

Structure determination

Of the two possible space groups, Aa and A2/a, the former is chosen since in A2/a the atoms would have to be in special positions and it would be impossible to form a reasonable sulphate tetrahedron. Aa has fourfold general positions. It was also noticed that the structure is pseudo-tetragonal approximating to $I\overline{4}2d$, the 'unique axis' being the [201] monoclinic axis.

Patterson syntheses of projections along the a and b axes gave vector maps showing peaks identified as corresponding to S-S, S-Na, S-O, and Na-Na vectors. These projections also confirmed that the space group is Aa. The sulphur atoms were placed unequivocally and the orientation of the SO₄ tetrahedron was found. The sodium ion was placed except for an ambiguity of sign in the x coordinate. A model showed that in one of these two positions the Na+ would be too near the anions. However, one cycle of refinement in the [h0l] zone, with scale and temperature factors given by Wilson's method, resolved the ambiguity, and the lower agreement index was at this stage R = 0.20. With the phases so obtained a Fourier 'F' synthesis using the observed structure amplitudes was computed with a program written by Pilling, Lovell & Bujosa (Cruickshank et al., 1961); the resulting electron density map failed to reveal the water molecule which later proved to be eclipsed in the a and b projections.

At this stage an attempt was made to refine the atomic positions in three dimensions. In three cycles the R index fell from 0.36 to 0.31. Two of the oxygen positions would not refine at first until the water molecule had been located on a three-dimensional set of electron-density maps. Thereafter the refinement proceeded smoothly. The structure is shown in Fig. 1.

Refinement

Refinement was carried out by the method of least squares with a program written by Cruickshank & Pilling (Cruickshank *et al.*, 1961). The function minimized was $R = \Sigma w(|F_o| - |F_c|)^2$ where the weighting factor w was $1/|F_o|$. The scattering factor for sulphur was that of Tomiie & Stam (1958), for Na⁺ that of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955), and that for O^{±-} was obtained from curves for O and O⁻ of Berghuis *et al.* (1955).

When the R index had reached 0.25 anisotropic temperature factors were introduced for all the atoms. After six cycles of refinement R fell to 0.14.

A test for extinction was made by using observed and calculated intensities. A correction was applied to five reflexions assuming the Darwin formulae for secondary extinction but applying these to the two planes of polarization separately, as advocated by Zachariasen (1963).

Calculation of O–O distances was used to identify the hydrogen bonds in the structure; all the oxygen atoms participate in at least one such bond and the water oxygen in two. Since S–O(3) was clearly the longest S–O bond, the attachment of the acidic hydrogen was thereby determined. In this way, hydrogen atoms were

Fig. 1. Projection along b axis showing hydrogen bonds.

428 STRUCTURE ANALYSIS OF SODIUM HYDROGEN SULPHATE MONOHYDRATE

Table 1. Observed and calculated structure factors

		-											· · · · · · · · J		-					
0	0	-8	271	257	I I4	230	I	7	- 3	206	тат	175	-75	•	т	۲	T 26	~ *	~ ~	
0	0	-6	285	275	261	88		ź		-69	- 66	- / 5		2	•	2	120	92	92	-2
0	0	-4	620	728	622	278	+	- <u>7</u>	-1	100	100	125	-109	3	2	-0	245	I79	-1 57	87
0	•		475	6	- 3 3	370	I	7	I	224	244	-50	-239	3	2	-0	339	291	-185	224
č	ĕ		415	012	213	335	I	7	3	1 59	136	-123	-58	3	3	-4	334	279	-131	246
0	I	-7	254	249	100	228	I	7	ŝ	155	1 8 7	-154	-106	ž	2	-2	515	620	- 3-	6.0
0	I	-5	325	294	249	156	T	8	ŏ	102	200	-1.32	- = = = = = = = = = = = = = = = = = = =	2	-	~	1-1			019
0	I	-3	400	412	-237	227	-	Ř		- 95	200	-6.	50	5	-		440	449	-270	350
0	T	- Ť	400	121	427	557	1	0	4	02	73	-03	37	3	2	2	429	385	167	347
	-		400	434	431	م د	I	9	I	246	248	-16	248	3	2	4	367	347	-17	347
0	2	-0	130	142	-137	-30	I	9	3	214	275	22	273	3	2	6	305	7 5 5	TT O	347
0	2	-6	330	317	295	-115	T	τó	ŏ	T 2 8	175	T 2 2	- 7 5		-					109
0	2	-4	502	426	-350	-250	-		_ 9	- 3 -	• / 5	• 3 2	**4	3	3	-9	215	109	-131	-107
0	•	- 2	255	202			2	0	-0	93	00	00	7	3	3	-7	440	442	-394	200
			* 3 3	203	-14/	-139	2	0	-6	49 I	513	510	58	3	3	-5	375	3 3 3	-122	-8₄
0	2	0	340	313	-313	0	2	0	-4	366	354	-230	-102	2	2	- 2	557	503	-8-	r 8 m
0	3	-7	249	231	-47	-226	2	0	-2	TT 20	1120	1126	170	5	5		557	594	د ب	307
0	3	-5	294	253	-179	- 178	-	~	-	,-	60.0		1/3	3	3	-1	102	135	-51	125
0	2	- 2	512	525	- 4 7 8		2	0	0	549	005	505	150	3	3	I	338	319	204	244
~	3		545	222	4/0	240	2	0	2	420	617	563	-252	3	3	3	243	240	244	17
č	3	1	300	303	-200	255	2	0	4	322	294	280	-90	2	2	č	244	202		- 6 8
0	4	-8	02	102	-45	-91	2	0	6	400	3 20	201	-1 74	5	3	-6		203		100
0	4	-6	325	288	-247	-148	-	-	-0	400	339	_60	1/4	3	4	-0	100	153	-150	33
0	4	-4	201	220	-102	-107	-	-	9	420	≥43	-00	233	3	4	-4	270	278	258	103
~			- 94	220	192	107	2	I	-7	292	287	220	184	3	4	-2	300	247	-130	201
U	4	-4	219	530	-491	190	2	I	-5	276	248	-74	226	2	Å	0	്ററ്	8.		8.
0	4	0	188	I49	149	0	2	T	- 2	TAO	1 2 8	=	- 3 -	2	7		- 90			01
0	5	-5	332	299	-8	-200	~			49	120	90	91	3	4	3	100	I45	-59	132
0	5	- 3	76	66	-62	22	24	I	1	577	594	549	220	3	4	4	132	131	57	118
0	ž	-Ť	66	80		-68	2	I	I	370	340	-157	-301	3	4	6	93	109	-95	-53
~	2			200	42	-08	2	I	3	245	180	18	-180	3	Ś	-7	254	208	162	-120
0	0	-4	109	109	-107	-131	2	T	5	226	2 2 0	2 7 2		2	e l		257			
0	6	-2	115	108	-6	108	~	:	5	- 96	239	210		3	2	· 3	a 37	444	100	-120
0	6	0	280	212	-242	•	▲.	Ŧ	7	100	*33	I	-233	3	5	-3	44I	513	255	-445
~	~			6		_0	2	2	-8	300	150	130	87	3	5	-1	299	268	-97	-250
č		3	444	190	100	-73	2	2	-4	251	213	181	111	2	è	т	172	454	-	
0	7	-1	330	382	206	322	2	2	-2	T 78	T 4 0	7 2 7	50	5	2	-	473	434	94	-444
0	7	I	336	382	206	-322	-	-	~	500	- 49	- 3/		3	2	3	37	30	-35	-14
0	8	-4	170	165	7 5 5			-		309	209	500	-27	3	5	Ş	231	244	-118	-214
<u>`</u>	8				1 3 3	37	2	2	2	484	480	-480	-3	3	6	6	286	263	231	-127
č		-2	279	300	229	200	2	2	4	374	332	260	TOA	2	6	-4	272	202	- 3-	
0	8	0	274	297	297	0	2	2	6	152	1 2 2	-20	120	2	6		343	303		-290
I	I	-9	123	136	-129	-43	2	2	-7	1 26			- 30	3	č	-2	429	400	290	-280
T	т	-7	216	201	-180	220		5		130	101	-29	-97	3	0	0	405	467	- 157	-440
÷	-		34-				2	3	-5	393	355	-1 89	-301	3	6	2	374	342	78	-222
-	1	-3	437	213	-194	-07	2	3	-3	408	399	-357	179	2	6	A	208	221		
I	I	-3	447	539	-247	479	2	3	-1	53	37	10	-26	2	-		6.	3-1		a 3 4
I	I	-I	308	304	-20	303	2	2	÷	224			30	3	7	-7	04	79	70	-2 I
I	I	I	795	808	170	880		3	•	324	411	-222	115	3	7	-5	105	87	77	-40
Ŧ	Ţ		160		- /9		2	3	3	259	225	-217	56	3	7	-3	118	127	122	26
-		3	400	447	447	0	3	3	5	269	254	-18	253	ž	7	- Ť	7 8 c	* 4 7		
1	I	5	453	502	384	324	2	3	7	105	121	-107		5	<i>.</i>	-		14/	14	-120
I	I	7	224	227	201	-104	2	ž	-6	266				3	7	3	142	130	-40	-134
I	2	-8	101	124	-72	TOT	~			300	343	-01	-315	3	8	-0	137	I 59	-1 59	7
т	2	-6	220			101	2	4	-4	035	707	-003	-247	3	8	-4	212	106	57	80
2			370	399	-230	321	2	4	-2	393	316	-294	117	ž	8	-2	¥ 80	160		
I	2	-4	439	428	-71	422	2	Å	•	522	F 4 B	-		2	ŏ		1.00	100	-121	-30
I	2	-2	579	688	107	670	-			555	540	239	- go	3	0	2	131	153	-100	110
I	2	0	010	007	6	005	4	4	2	220	240	-240	3	3	9	-3	167	180	-99	150
-	-	-	9-9	907) •	903	2	4	4	382	401	-377	137	3	9	-i	180	148	- 50	T 40
-	~	2	444	443	-44	44I	2	4	6	193	96	-01	33	2	á	Ŧ	278			14.
I	2	4	504	510	308	415	2	÷	-7	270	287	6		3	~		270	a /9	-/4	209
I	2	6	288	248	62	240	~	2		2/9	201		-207	4	0	-10	120	I74	-137	107
1	2	8	τ 8ο	200	T 08	20	۵	2	-5	2 34	240	-00	-230	4	0	-8	472	422	342	247
-	-	- 7		- 96		30	2	5	-3	279	263	-71	-253	4	0	-4	378	278	347	T 5 T
	3		202	100	-100	-40	2	5	-1	123	108	-107	6	Å	0	-2	5 7 7	440	222	
I	3	-5	443	487	-394	285	2	Ś	I	400	375	- 1 < 7	-240	7	~	-	7.6	440		300
I	3	-3	345	309	12	- 200		5	-	-6 -	373		340	4	0	0	520	4 0 9	424	243
I	3	-1	313	205	52	200		2	5	302	300	-215	314	4	0	2	203	233	170	160
Ŧ		-	-6-				2	Ş	ş	90	IID	-107	45	4	0	4	477	56 I	544	127
1	3	-	202	201	-254	-500	2	0	-0	36	39	-31	23	Å	0	6	TAT	160	0.2	
I	3	3	205	178	107	142	2	6	-4	173	132	117	60						95	131
I	3	7	152	I 56	117	102	2	6	-2	187	140	- 8 -		7			497	200	40	201
I	4	-6	141	124	102	70	•	6	~			• /	110	4	Ŧ	-7	204	274	59	207
T	Å	- 1	275	2.6	-100		-	ž	5	205	a 33	79	-219	4	I	-5	237	205	-166	120
-	4	-4	~/)	- <u>5</u> -	193	-132	2	ō	2	213	109	-168	-22	4	I	-3	205	78 c	200	220
*	4	-2	315	391	29I	20	2	6	4	83	62	-22	۲8 م		+	_ ,	340	0.07	. 0.	399
I	4	0	476	456	-439	125	2	.7		1 8ĕ	IOC	7 8 7		4	4	1	440	205	104	91
I	4	.2	90	88	-27	-83	2					10/	34	4	I	I	184	150	-48	-142
I	Å	٨	100	T 76		- J - J		<u> </u>	-3	440	444	102	413	4	I	3	228	311	208	-38
-	÷			- / -		•• 5		1	-1	200	300	300	-17	4	I	5	126	TAA	112	-80
-	2		~ > 1	230	230	-10	2	7	I	366	369	353	105	ż	2	-č				~ ~ ~
I	5	-5	207	271	59	-265	2	7	2	205	211	208	- 28	4	4		431	130	130	I
I	5	- ?	211	201	102	ðr 1-	•	~					30	4	3	-4	114	119	-115	-29
	2				- 0		2	7	5	177	210	213	-34	4	2	-2	610	725	722	70
1	2	1	321	290	30	-200	2	8	-6	II7	122	IOA	64	÷	2	ò	205	2.6		
I	5	I	171	129	-118	-53	2	8	- 4	203	T 8 2	~ ~	1 2 4	4	4		393	540	-112	-320
I	5	२	328	282	74	-274	-	Ř	7			90	+ 3 3	4	3	2	240	230	I 57	-108
I	ē.	7	2 4	280	-+ / 2	- / -	a .	~	0	205	273	273	-15	4	2	4	IIO	105	-99	35
:	r K	_4	~ 34	200	• 4 •	- 230	2	8	2	259	279	279	-I2	4	2	6	50	66		-66
1	6	-0	103	I47	89	-117	2	9	I	193	310	50	-201		2	-7	208	201	~	
I	Ó	-4	322	324	303	-114	2	T	-0	TOF	104	-171		*	2		300	304	¥	-297
I	6	-2	325	270	٥ð	-261	5	:		• 9 3	• 9 4	±/±	04	4	3	-5	332	298	-232	-187
T	6	0	5 - 5	278	2.0		3		-7	140	134	-39	-30	4	3	-3	26 I	227	-65	-218
:	é.	ž	j⊥⊿ 	370	a 30	-300	3	I	-5	183	178	-142	107	4	3	-i	201	IAŠ	-1 2Č	- 50
1		2	300	304	-199	-304	3	I	-3	476	480	22	- ∡88	Å	2	+	280	250	- 3 -	J9
I	6	4	270	214	77	-200	ž	T		284	402	-268	.6.	*	2	-	500	333	- # 74	-422
I	6	6	212	272	-242	-124	2	÷	:	2				4	3	3	2 37	222	-148	100
- -	-		108	- / 3	- 43		3	1	I	353	300	-145	-271	4	3	5	I44	131	-121	14
*	1	-5	190	112	101	47	3	I	3	417	404	85	395	4	4	-Ġ	451	428	-287	-220
												-		•	•		· =	+3-		ఎ . ⊻

Table 1 (cont.)

4	4	-4	329	294	-275	-104	5	7	-5	105	IOI	99	-18	7	4	0	61	52	48	20
4	4	-2	609	592	-589	-65	5	7	-3	II3	III	24	-109	7	4	2	140	1 5 1	-151	-1
4	4	0	339	312	-312	-8	6	0	-10	102	262	TOS	212	2	e	-7	775	162	7 2 2	-06
4	4	2	529	540	-400	207	6	ō	8	212	220	8,	275	4	5		*/5	-66	• 5 •	90
i.			1 .6	- 86	-20	1 5 7	6	~	-6	100	- 30 	-6-		1.	ຼ		137	100	150	71
7	7		-6.	-69			ž			407	445	307	214		2	-3	251	231	155	-171
4	2	-7	104	100	-04	-140	Š	0	-4	430	411	301	I 5 3	7	5	-1	291	209	170	-113
4	5	-5	227	341	~75	-229	0	0	-2	500	663	053	110	7	5	I	198	210	74	-196
4	5	-3	259	260	-170	197	6	0	0	235	184	I 36	-123	7	6	-6	218	271	271	-4
4	5	-1	258	226	-17	-225	6	0	2	408	48 0	180	94	7	6	-4	101	171	. 71	- 7 56
Å	č	т	272	260	-162	202	6	0			172	1 77	-10		7		1 6 7			- 6
7	2	-	- 7 5				6	-		-) +	- /-	- / - 6		ģ			- 57	1 3 3	119	
4	-2	_5	210	190	-101	101	ž	1	-9	245	250	50	244	Š		-0	214	109	77	150
4	ž	-0	21	44	43	14	0	Ι.	-7	140	145	-20	143	Ô	0	-0	97	110	35	105
4	0	-4	232	225	-100	198	6	I	-5	22I	191	2	191	8	0	-4	449	476	408	246
4	6	-2	184	147	I45	25	6	I	-3	328	321	230	225	8	0	-2	174	157	I 4 3	-67
4	6	0	100	I44	38	-139	6	т	-1	122	74	74	- š	8	0	0	225	327	126	- 2 1
4	6	4	111	115	- 37		6	Ŧ	-	181	T 80	760	-82	8	т	-0	140	748	8	8
Å	7	-7	1 5 2	102	T 00	-22	Ă	-	â	. 80	-66	-6-	• 5	Ř			- 49	140		140
7	4		258	• 9 3	- 16	- 20	ź	1	3	100	100	103	12		-	-7	110	113	-52	100
4	<u> </u>	-3	4 50	234	140	102	ç	2	-8	120	108	90	-59	8	I	-5	191	180	76	163
4	7	-3	220	301	201	12	6	2	-6	372	378	-326	-191	8	I	-3	141	141	63	126
4	7	-1	298	280	272	64	6	2	-4	195	167	69	152	8	I	-1	119	104	92	-49
4	7	I	248	250	233	-90	6	2	-2	177	201	-187	74	8	T	т	120	TAO	T 28	57
4	7	3	ISS	174	166	50	6	2	0	120	0.4	0.2	- 12	8	-	-8	122	102	= 10	
ż	8	-4	227	778	8	1 2 2	6	~		- 3-	74	-80	1.0	ő	4		143	103	-49	-90
7	ě			- / 8		* 3 3	š	-		133	- 0-	-02	73	°,	2	-0	110	79	70	10
4	š	-4	130	140	140	40	0	3	-9	141	107	59	-177	8	2	-4	140	117	-107	47
4	0	0	213	221	220	-10	6	3	-7	220	237	-120	-201	8	2	-2	85	86	61	61
4	8	2	127	I 39	132	44	6	3	-5	291	295	-151	-254	8	2	0	117	103	-52	88
4	9	-3	242	225	27	223	6	3	-3	180	190	-188	-25	8	2	-7	184	187	- 25	-184
4	9	-1	153	162	135	-80	6	3	-1	260	228	-216	-271	8	2	- 6	6		-04	
Ś	Ť	-0	222	216	-206	-6 2	6	2	Ŧ	287	287		- 3-	Ř	2			94	- 4	6
2	:	-7	252			• • •	6	3	-	-69	201	66	6-	õ	3	- 3	147	153	-40	-140
2	+	-/	302	424	-300	210	4	3	3	100	179	-100	07		3	-1	102	120	-150	-43
5	I	-5	I 5 5	124	-110	-43	0	4	-0	107	170	-48	-109	8	3	I	121	I34	-133	-5
5	I	-3	428	445	-207	394	6	4	-6	1 35	I43	14	-143	8	4	-8	136	162	5	-162
5	I	-1	267	212	-136	-162	6	4	-4	168	276	-231	-150	8	4	-6	274	237	-101	-140
ŝ	I	I	360	346	-87	335	6	Å	-2	220	226	-67	-216	8	ż	-4	112	TTO		
é	-	,	120	124	- 12	116	6	1	~		440			Ř	7	-4	669	119		
2	:	2			43		ž	4	, v	443	444	-445	-144	0	4		307	304	-215	-215
2	-	S	440	434		¥ 39	0	4	2	249	233	-223	00	ŝ	4	0	322	235	-200	-112
5	2	-0	272	230	-197	9 119	6	5	-7	275	209	78	-257	8	5	-7	100	I44	-48	-130
5	2	-0	323	295	-275	105	6	5	-5	89	100	-91	4 I	8	5	-5	198	200	-52	-193
5	2	-4	414	411	-89	401	6	5	-3	179	165	58	-154	8	5	-3	110	108	-78	-74
5	2	-2	473	531	-148	401	6	š	ī	112	٥š	-Šī	-40	8	Ğ	-ĕ	52		-28	20
š	2	0	102	270	<u> </u>	270	6	ň	-6	142	1 2 7		27	8	6		8.	45	-8-	35
é	-	2	425	428		370	š	ĕ		- 43	- 37	- 3.3			v	-4	03	07	-07	1
2	-	1	435	420	37	44/	4		-4	103	14/	-09	130	9	I	-7	108	170	-170	8
2		4	295	440	51	242	0	7	-5	120	100	02	00	9	I	-5	140	107	-150	-73
5	3	-9	105	108	-151	74.	6	7	-3	184	172	86	I49	9	I	-3	188	216	-158	148
5	3	-7	218	249	-181	-170	7	I	-9	284	263	-251	78	à	2	-8	108	105	-100	22
5	3	-5	.224	170	-140	96	7	I	-7	168	160	-158	-21	á	2	-6	7.87	180	-157	80
ŝ	3	-3	176	131	-120	-22	7	I	- 5	308	400	-175	260	, ,	-			- 86	-7.06	• • • 6
š	2	-ĭ	201	212	-05	224	2	Ŧ	-2	68	07	- 7 5		9	4	4	212	100	130	140
2	2.	-	247	276	274	224		:				\$/	, , , ,	9	2	-2	197	192	-127	145
2	2		24/	-6-		29	<u>'</u>	÷.	1	311	301	• • • •	200	9	3	-7	58	70	-00	22
ິ	5	<u>ې</u>	433	4 05	142	224	7	I	I	122	110	110	43	9	3	-5	214	194	-120	153
5	4	-0	200	197	192	47	7	I	3	102	172	7 I	I 5 7	9	3	-3	42	59	-35	-47
5	4	-4	119	105	98	38	7	2	-8	226	212	-209	36	9	3	-1	171	173	-48	166
5	4	-2	165	125	125	0	7	2	6	233	210	-77	195	à	Ă	-6	137	128	43	120
5	Å	0	TAA	120	- 51	-118	7	2	-4	350	228	-214	262	á	Å	- 4	- 37	70	-66	2
ř	7			****	80	50	7	2		351	100	- 7 7 2		,	7				60	
2	4	4		103		<u>مر</u>	4	ĩ	-2	204	- 77	- / 3	299	9	4		104	112		- 09
5	4	4	142	132	-110	-28	<u>′</u>	~	- 4	304	270	-77	205	9	5	-5	1 35	I 5 5	79	-134
5	5	-5	273	304	253	-108	7	2	0	372	324	-45	321	9	5	-3	100	III	79	-78
5	5	-3	100	172	100	-03	7	2	2	293	288	22	287	IO	0	-4	192	223	28	220
5	5	-1	437	443	47	-440	7	3	-9	174	172	-149	-87	IO	I	-7	107	111	٥	111
5	5	I	177	143	0	-143	7	2	-7	147	157	-157	- 2	To	Ť		164	172	22	171
š	š	2	2 2 0	227	-115	-180	7	2		172	162	-87	-126	10	:		67	- / -	~)	- / -
2	6	-6	- 37	174			<i>.</i>	2		-/3			- 3-	10		2	6	6.	57	44
2	š		- 91	+/4	ر م - م	•/•	7	3	-3	4/4	403	-479	49	10	24	-0	°4	09	37	-58
S	2	-4	279	429	207	-98	7	3	-1	172	134	-115	-09	10	2	-4	120	129	108	-71
5	ò	-2	291	209	-119	-241	7	3	I	280	292	-70	284	10	3	-5	108	136	-6	-136
5	6	2	191	200	-125	-1 56	7	4	-4	80	83	5 I	66					-		-
5	7	-7	102	133	98	-90	7	4	-2	168	154	-111	-107							
							-													

Table 2. Fractional coordinates and standard deviations

	x/a	y/b	z/c	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
S	0.005	0.129	-0.024	0.006	0.003	0.006
Na	-0.246	0.206	0.243	0.008	0.006	0.008
O(1)	0.956	0.2258	-0.758	0.013	0.013	0.015
O(2)	0.119	0.697	0.181	0.014	0.012	0.013
O(3)	-0.170	0.213	-0.018	0.014	0.012	0.016
O(4)	-0.064	-0.011	-0.160	0.016	0.013	0.014
O(W) 0.009	0.091	0.525	0.012	0.014	0.012
H	-0.015	0.026	0.636			
Н	0.040	0.017	0.497			
Н	0.238	0.204	0.369			

given reasonable positions on the O-O vectors; the hydrogen coordinates would not refine and so were kept constant. The refinement was completed in a further three cycles when the value of R was 0.105; the largest shift in any parameter was 0.25 of the standard deviation. Table 1 shows the final observed and calculated structure factors, Table 2 the atomic coordinates and their standard deviations and Table 3 shows the final values for the tensor components describing the anisotropic vibration of the atoms. The tensor components U_{ij} are those occurring in the temperature factor

Table 3. *Thermal parameters* $(Å^2 \times 10^{-3})$

	U_{11}	σ	U_{22}	σ	U_{33}	σ	U_{12}	σ	U_{23}	σ	U_{13}	
S	6	1	6	1	3	1	3	2	2	2	-3	2
Na	20	3	10	3	13	3	- 5	5	9	5	14	5
O(1)	13	5	14	6	32	6	-13	10	-12	10	26	10
O(2)	22	6	19	6	1	4	-17	10	0	8	-7	8
O(3)	9	5	19	7	22	6	6	9	9		13	9
O(4)	38	8	14	5	10	5	-17	11	-12	9	18	9
O(W)	27	6	27	6	1	5	- 21	10	- 5	8	7	10

$\exp\{-2\pi^2(h^2a^{*2}U_{11}+2hka^*b^*U_{12}\ldots)\}$

so that for instance U_{11} is the mean square amplitude of vibration of the atom parallel to the a^* axis.

An analysis of the vibrational motion was carried out with a program written by Bujosa & Cruickshank (Cruickshank *et al.*, 1961). The results showed that the assumption that the SO₄ group moved as a rigid body was justified within experimental error, the index of difference between calculated and observed radial vibration amplitudes for these atoms being 0.003 Å (s.d.). Table 4 shows the translational and rotational amplitudes of the SO₄ motion. Corrections for the systematic errors in bond lengths caused by rotational oscillation were also calculated by this programme, using Cruickshank's (1961) formulae: the most significant change in any coordinate was 0.9 times the standard deviation. The corrected coordinates are given in Table 5.

Table 4. Principal values and axes of the translational and rotational tensors w.r.t. standard orthogonal axes a, b, c^*

mean-square								
Amplitude of translation	Direction cosines of axes							
$0.000 \pm 0.002 \text{ Å}^2$	0.354	0.372	0.858					
0.013 ± 0.002	-0.921	0.297	0.251					
0.010 ± 0.002	0.161	0.879	-0.448					
Root-mean-square	Direction cosines of axes							
1.9°	0.416	0.336	0.845					
7.2	0.156	-0.942	0.298					
4.8	0.896	0.008	-0.444					
Table 5. Corrected coordinates for SO ₄ (Å)								
			<pre></pre>					

S	0.042	1.002	-0.187
O(1)	0.797	2.011	-0.589
O(2)	0.983	0.544	1.428
O(3)	- 1.409	1.660	-0.142
O(4)	-0.535	-0.090	-1.267

Interatomic distances and angles

From the corrected coordinates the bond lengths and angles and all interatomic distances of less than 3.5 Å were calculated with a program written by Truter (Cruickshank *et al.*, 1961). A program written by Mr J. G.F. Smith was used to compute standard deviations in all distances and angles. Selected values are shown in Table 6.

The hydrogen bond involving the acidic hydrogen O(2)—O(3') is 2.70 Å long whilst of those involving the water O(4)—O is 2.91 Å, and O—O(1) is 2.90 Å.

In the HSO_4 group there is no doubt that the hydrogen is attached to O(3) as S-O(3) = 1.613 Å compared with S-O(1) = 1.432 Å, S-O(2) = 1.478 Å, S-O(4) = 1.440 Å. The attachment of this hydrogen to O(3) is also supported by the O(3)-S-O(1,2,4) angles which are all less than tetrahedral. In considering the probable positions of the water hydrogen atoms the two distances quoted above were chosen as bonding distances, 0.2 Å less than any other water-oxygen distance. Na⁺ · · · O distances range from 2.35 to 2.46 Å and are similar to other determined values (Sass & Scheuerman, 1962; Carpenter, 1952; Taylor & Beevers, 1952).

The lone pairs of each water molecule point approximately to two Na⁺ ions, whereas those of the anion oxygen atoms form only one such link each. The coordination shell of the Na⁺ ion is a distorted octahedron of oxygen atoms.

Discussion

The gross structure in terms of cations and anions (Fig. 2) shows 4:4 coordination with Na⁺ near the centre of an approximately rectangular (4·23 Å × 5·52 Å) arrangement of sulphur atoms. Each anion is surrounded by four sodium ions at the corners of an irregular

Fig. 2. (a) Gross structure of Na (small circles) and S (large circles) positions with a axis vertical, for comparison with (b) tenorite, CuO (monoclinic, space group C2/c) approximately to the same scale.

Table 6	. Selected	bond	lengths	and angle	S
14010 0		001100		and angle	~

 1.432 ± 0.013 Å

 1.478 ± 0.012

3 - O(3)	1.012 ± 0.012
S-O(4)	1.440 ± 0.013
$O(3)-H \cdots O(2)$	2.70 ± 0.02
$O(1) \cdots H - O(W)$	2.90 ± 0.02
$O(4) \cdots H - O(W)$	2.91 ± 0.02
$Na^+-O(3)$	2.423 ± 0.015
$Na^+ - O(W)$	2.378 ± 0.015
$Na^+-O(4')$	2.455 ± 0.015
$Na^{+}-O(2')$	2.457 ± 0.015
$Na^{+}-O(1')$	2.351 ± 0.015
$Na^+ - O(\hat{W'})$	2.376 ± 0.015
• •	

 $\begin{array}{cccc} O(1)-S-O(2) & 113^{\circ}14'\pm1^{\circ}\\ O(2)-S-O(4) & 111 & 51 \pm1\\ O(1)-S-O(4) & 113 & 06 \pm1\\ O(1)-S-O(3) & 108 & 56 \pm1\\ O(2)-S-O(3) & 101 & 14 \pm1\\ O(3)-S-O(4) & 107 & 39 \pm1\\ \end{array}$

tetrahedron. This structure is close to that of tenorite CuO [Fig. 2(b)] and is reminiscent of the tetragonal sulphides of palladium and platinum. The structure is stabilized by the hydrogen bonds already mentioned.

S-O(1)

S--O(2)

The hydrogen-bonded HSO_4^- groups are linked by their acid hydrogen atoms in zigzag chains lying along the mean direction [101], and are cross-linked by water molecules in another chain arrangement along [011]. The mean S–O length is the same as the known length for S–O in SO $_{4}^{2-}$ measured by Atoji & Rundle (1958). within the standard deviations. This corresponds to the empirical rule proposed by Cruickshank (1961b) stating that in XO_4 tetrahedra (X = Si, P, S, Cl) X–O bonds in which the oxygen becomes linked to another atom or to another tetrahedron may lengthen by amounts up to 0.15 Å whilst the other X–O bonds in the tetrahedron contract so as to preserve the average. It is hardly to be expected that this rule could still apply strictly, if most or all of the four oxygen atoms become externally bonded. A formal correlation of various bond lengths is suggested in Fig. 4, in which successive links alternately expand or contract if hypothetically

Fig. 3. Superposition of (a) curve of O-H distance in hydrogen bond (abscissa: O-O distance) and (b) points giving 'shrinkage' of the X-O(H) bond relative to X-O(R)

the O-O distance is varied. In this connection we may note first that the S-O(2) bond is longer, having the stronger (2.70 Å) hydrogen bond, than either S–O(1) or S–O(4) in which the oxygen atoms are linked by (2.9)Å) bonds to water molecules. However, whilst this difference appears significant we have not shown the S-O(3)(H) bond to be noticeably shorter than the known S-O(R) bond; if such a difference exists it may be merely obscured by the standard deviations. This is in contrast with Cruickshank's further suggestion that in crystals, when acidic hydrogen is attached to sulphate or phosphate groups, the bonds for S-O(H) and P-O(H) are considerably shorter than when a group R is attached. The difference, attributed to the formation of short hydrogen bonds of 2.49–2.62 Å, is seen in the data of Table 7. As hydrogen bonds become shorter the O-H equilibrium distance becomes more sensitive to changes in the O-H - - - O distance (Fig. 3) (Nakamoto, Margoshes & Rundle, 1955; Pimentel & Sederholm, 1956). Intuitively we should expect the S-O(H) distance to vary accordingly, and to be relatively little influenced by the hydrogen bond if the O–O distance is larger than 2.7 Å, as it is here (larger than in any of the quoted structures).

Table 7. X–O bond lengths in sulphates and phosphates

Compound	X-0	X–O(H) X–O(R)	e.s.d.
K(C ₂ H ₅)SO ₄	1.46	1.60	± 0.007
$KHSO_4$	1.47	1.56	± 0.015
Serine(HPO ₄)	1.50	1.56 1.61	± 0.01
KH ₂ PO ₄	1.51	1.58	± 0.02
H ₃ PO ₄	1.52	1.57	± 0.02

The percentage difference between X-O(R) and X-O(H) is plotted against the O-O hydrogen bond distance also in Fig. 3 for comparison, though the data hardly justify a functional relation. It is clear that on

Fig. 4. Suggested correlation of S-O(3) and S-O(2) bond lengths with hydrogen bond length.

this issue we require more data, especially in the form of precisely measured bond lengths.

The structure described above is far from being typically ionic; but it is held together by forces which in their nature and stereochemistry seem to be fully typical of the elements present.

We are indebted to Professor D. W. J. Cruickshank for discussion of the results and to Dr J. A. S. Smith for helping to initiate the enquiry. One of us (T.A.B.) received financial support from the Department of Scientific and Industrial Research.

References

ATOJI, M. & RUNDLE, R. E. (1958). J. Chem. Phys. 29, 1306.
BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA,
B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.

CARPENTER, G. B. (1952). Acta Cryst. 5, 132.

- CRUICKSHANK, D. W. J. (1961a). Acta Cryst. 14, 896.
- CRUICKSHANK, D. W. J. (1961b). J. Chem. Soc. p. 5486.
- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LO-VELL, F. M. & TRUTER, M. R. 1961. Computing Methods and the Phase Problem in X-ray Crystal Analysis.
- NAKAMOTO, K., MARGOSHES, M. & RUNDLE, R. E. (1955). J. Amer. Chem. Soc. 77, 6480.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- PIMENTEL, G. C. & SEDERHOLM, C. H. (1956). J. Chem. Phys. 24, 639.
- ROLLETT, J. S. & SPARKS, R. A. (1960), Acta Cryst. 13, 273.
- SASS, R. L. & SCHEUERMAN, R. F. (1962). Acta Cryst. 15, 77.
- TAYLOR, P. G. & BEEVERS, C. A. (1952). Acta Cryst. 5, 341.
- TOMIIE, Y. & STAM, C. H. (1958). Acta Cryst. 11, 126.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1954). 19, 432

Structure Cristalline du Bronze de Vanadium-Lithium LiV₂O₅

PAR JEAN GALY ET ANTOINE HARDY

Service de Chimie Minérale (Paul Hagenmuller), Faculté des Sciences de Bordeaux, France

(Reçu le 26 janvier 1965)

LiV₂O₅ crystallizes in the orthorhombic system. The space group is $Pna2_1$ ($C_{2\nu}^{9}$), and the parameters are: a=9.702, b=3.607, c=10.664 Å. The structure has been determined by Patterson projections and refined by diagonal approximation. The atoms of oxygen are at the corners of distorted trigonal bipyramids surrounding vanadium atoms. These bipyramids associated in pairs with a common edge form chains parallel to the Oy axis. The lithium atoms, surrounded by oxygen atoms at the corners of octahedra, effect the cohesion between these chains.

LiV₂O₅ est la composition limite de la série des bronzes Li_xV₄⁴⁺V₂⁵⁺_xO₅ étudiée par Hagenmuller & Lesaicherre (1963). Pour x variant entre 0 et 1, trois phases apparaissent: Li_xV₂O₅ α solution solide de lithium dans la maille de V₂O₅ orthorhombique, Li_xV₂O₅ β monoclinique dont la structure a été décrite précédemment (Galy & Hardy, 1964) et Li_xV₂O₅ γ orthorhombique dont LiV₂O₅ est la formule limite.

Les cristaux de LiV_2O_5 sont obtenus par fusion sous courant d'argon à 750 °C dans une nacelle de platine, puis refroidissement lent. Ils se présentent sous la forme d'aiguilles prismatiques à base rectangulaire; leur couleur est bleu foncé à reflets métalliques.

L'étude radiocristallographique sur monocristal à été effectuée à l'aide du rayonnement Cu $K\alpha$.

Les données cristallographiques sont rassemblées dans le Tableau 1.

Tableau 1. Données cristallographiques relatives à

Dimensions de la maille	$a = 9,702 \pm 0,005$ Å
	$b = 3,607 \pm 0,003$
	$c = 10,664 \pm 0,009$
Groupe spatial	$Pna2_1 (C_{2v}^9)$
Dobs	$3,35 \pm 0,05$
Deale	3,38
Nombre de motifs par maille	Z=4

Les paramètres ont été précisés par la méthode du cristal oscillant. Le groupe d'espace a été déterminé à l'aide du rétigraphe Rimsky pour les plans h0l, h1l, h2l, h3l. Il a été confirmé par l'étude des plans réticulaires suivant les deux autres directions sur le goniomètre de précession de Buerger.

La mesure de l'intensité des taches sur les rétigrammes relatifs aux plans h0l, h1l, h2l, h3l a été faite avec le microdensitomètre Vassy MD3.